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Let X be a Banach space, V a closed subspace of X, F a bounded subset of
X. Let radv(F) = infllEv SUPXEF II x - Y II, ccntv(F) = {y E V; SUpxEF II x - Y II =

radv(F)}. Elements of centv(F) are called best simultaneous approximations
to F by elements of V. The problem of the existence, characterization and
unicity of such best simultaneous approximations has been recently studied
by many authors (see e.g. [11, 12, 13]).

The purpose of this paper is to show that in certain subspaces V of a given
Banach space X a best simultaneous approximation exists for every bounded
set Fe X. By a simple compactness argument it may be shown that every
finite-dimensional subspace of an arbitrary Banach space and every w*-closed
subspace of a dual space have this propeIty. In Section 1 we prove that every
Weierstrass-Stone subspace of C(S, X), the space of all continuous X-valued
functions x on a compact Hausdorff space S equipped with the norm II xii =
SUPtES I x(t)l, where i • I is the norm of X, has this property, if Xis a uniformly
convex Banach space or a space Co . This generalises a result of Olech [9]
who showed that such subspaces are proximinal, if X is uniformly convex.
In Section 2 we show that centv(F) =1= 0, if V is an M-ideal in a Lindenstrauss
space and F is a compact set. If V is an M-summand in an arbitrary Banach
space X admitting Chebyshev centers, then the same is true for every bounded
set F C X. In Section 3, finally, we show that centv(F) =1= 0 for every bounded
set Fe R(S), the space of all real-valued bounded functions on a set Sand
every closed subalgebra V of R(S).

Let x E X, X a Banach space, r > O. We denote by R(x, r) the closed ball
of X with center x and radius r. A space Co is the space of all real-valued
continuous functions x on a compact Hausdorff space S with the property
x(t) = -x(a(t» for all t E S, where a is an involutory homeomorphism of S
onto itself. A Lindenstrauss space is a Banach space whose dual is a space
L 1(fL) for some measure fL. All Banach spaces in this paper are real.
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SIMULTANEOUS APPROXIMATION

1. BEST SIMULTANEOUS ApPROXIMATION BY

WEIERSTRASS-STONE SUBSPACES

259

if yet) :;?: x(t) + €,

if I x(t) - y(t)J < €,

if yet) ~ x(t) - €

Let 8 be a compact Hausdorff space, X a Banach space. A subspace V of
CCS, X) is said to be a Weierstrass-Stone subspace, if there is a compact
Hausdorff space T and a continuous surjection : 8 ---+ T such that V =
{fE CC8, X);j = go for some g E CCT, X)}. Mazur (unpublished, see
e.g. [15, Proposition 7.5.6]), Olech [9] and Blatter [3] have proved that such
subspaces are proximinal if X = IR, X is uniformly convex, and X is a
Lindenstrauss space, respectively. In this section we show that if V is a
Weierstrass-Stone subspace of C(S, X) and X is uniformly convex or a space
Ca , then there exists a best simultaneous approximation in V for every
bounded set Fe CC8, X).

Let B(x, r + 8), B( y, r + B), 0 < B < 8, r > 0, x E X, Y E X be two balls
in a Banach space X. The following lemma says that, for certain Banach
spaces X, it is possible to "move" the center y of the second ball arbitrarily
"close" to the center of the first ball x without decreasing the intersection
B(x, r + B) n B( y, r + 8), if 8 is "small" enough. This idea is a modification
of that used in Proposition 2 [9].

LEMMA 1.1. Let X be a uniformly convex Banach space or a space Ca'
Let r > O. Then for every € > 0 there is a 8(€), 0 < 8(€) ~ € such that for
every x, y E X there exists an ZX,y E B(x, €) with the property

B(zx,y, r + B):J B(x, r + 8(€)) n B(y, r + B)

for every 8 with 0 < B < 8(€).

Proof For the case X uniformly convex, a similar argument has been
used to prove Lemma 2.1 of [16]. Therefore we omit the proof here.

Let X be a space Ca' For given € > 0 put 8(€) = €. For given x, y E X it
may be easily verified that the function

zx,uCt) = x(t) + €

= yet)

= x(t) - €

has the required property.

Remark. It seems not to be easy to decide whether concrete Banach
spaces have or have not the property established by Lemma 1.1 for uniformly
convex Banach spaces and the spaces Cu. In particular we do not know
whether the spaces L 1(p,) have this property. Since the proof of our Theorem
1.4 depends only on this property, for a Banach space X an affirmative
answer to this question would imply that for every Weierstrass-Stone sub­
space V of CCS, X) and every bounded set Fe (8, X) we have centv(F) =1= 0.
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The next proposition gives an example of a Banach space where the
conclusion of Lemma 1.1 does not hold.

PROPOSITION 1.2. Let tk = 1/2k, Sk = 1/(2k + I), k E I\\J. Let X be the
subspace of qo, 1] consisting of all functions f which satisfy the relations
f(Sk) = (llk)f(tk), k E I\\J. Let x == O. Then/or every n E I\\J, n ? 3, there is a
Yn such that for every Z E B(x, 1/10) there is a Zn E B(x, 1 + lin) n
B(Yn, 1 + 1/2n)\B(z, 1 + 1/2n).

Proof. Given n E I\\J, n ? 3, we define Yn to be 2 in the points tn and tn+l ,
o in the intervals [0, tn+2]' [Sn-I' 1], and linear in the intervals [tn+2' Sn+l]'
[sn+l' tn+l], [tn+l ,sn], [sn , tn] and [tn , Sn-I]' Let Z E B(x, 1/10). Then there is
an interval (u1 , u2) C [tn+l , tn] containing the point Sn such that z(t) ~ 1/5n
for every t E (UI ,U2)' Consequently, every Y E B(z, 1 + 1/2n) fulfils y(t) ~
1 + 7/10n for every t E (UI ,u2). We find now points VI' V2 E IR such that
(VI' v2) ~ (U1 , U2), Sn E (VI' V2), Yn(Vi) ~ 1 + lin, i = 1,2 (this is possible,
since Yn(sn) < 1 + lin). Let Zn be 1 + lin in the intervals [tn+l ,VI]' [V2, tn],
o in the intervals [0, tn+2], [Sn-I , I], and linear in [tn+2' Sn+1]' [Sn+I, tn+1]'
[VI' Sn], [Sn , v2], and [tn, Sn-I]' It is easy to check that Zn E B(x, 1 + lin) n
B(Yn, 1 + 1/2n). Since zn(t) = 1 + lin> 1 + 7/10n for every t E (uI , U2)\
(VI' V2), Zn cannot be in B(z, 1/10). This completes the proof.

Consider a bounded set F C C(S, X). For every t E T denote by 81(t) a
neighborhood base of t. For every U E 81(t) define a set Fu C X by

Fu = {x E X; X = f(s) for some fE F, some t' E U and some S E <p-I(t')}.

Put f u = radx(Fu). For every t E T{ru}uEaJ(t) is a decreasing net of numbers.
Put r(t) = limu ru , rF = SUP'ET r(t).

The next lemma gives a lower bound for rady(F).

LEMMA 1.3. Let X be a Banach space, Va Weierstrass-Stone subspace of
C(S, X). Thenfor every bounded set FC C(S, X) we have rady(F) :> rF.

Proof. Assume the contrary. Then there is agE V, a to E T and an Eo > 0
such that for every s E S and every f E F we have

1\1(s) - g(s)11 ~ r(to) - EO'

Choose an Sl E <p-I(tO)' There is a neighborhood U of to such that
II g(s) - g(sl)11 ~ Eo/2 for every s E <p-I(U). Hence

r(to) ~ ra = sup sup sup 111(s) - g(Sl)11
fEF tE a 8E",-1(t)

~ sup sup sup 111(s) - g(s)11
fEF tE a 8E",-1(t)

+ sup sup II g(s) - g(sl)11 ~ r(to) - Eo/2,
tE a 8E",-1(t)

a contradiction.
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Now, we prove the main theorem of this section.
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THEOREM 1.4. Let X be a uniformly convex Banach space or a space Cu •

Let V be a Weierstrass-8tone subspace ofC(S, X), Fe C(S, X) a bounded set.
Then there exists a go E centv(F).

Proof Define a set-valued mapping lfJ: T ---+ 2X by

lfJ(t) = {x E X; for any e > 0 there is a U E !!J(t) with Fu C B(x, rF + e)}.

If ho is a continuous selection of lfJ, then the function go = ho 0 cp is obviously
the required best simultaneous approximation. We show that the assumptions
of Michael's well-known selection theorem are fulfilled.

Let t E T. The set lfJ(t) is obviously closed and convex. We show that
<P(t) =1= 0. Take 0(1/2) from Lemma 1.1. There exists a neighborhood U1

of t with radx(Fu ) < rF + 0(1/2). Consequently, there is a point Xl EX
1

such that Fu C B(x1 , r F + 15(1/2». Now, take 15(1/4) from Lemma 1.1 such
1

that 15(1/4) < 15(1/2). There exists a neighborhood U2 CUI of t and a point
Y1 E X such that Fu C B(Y1' rF + 15(1/4». It follows from Lemma 1.1 that•there is a point X2 E B(X1' 1/2) such that Pu C B(X1' rF + 15(1/2» n•
B(Y1' rF + 15(1/4» C B(x2 , rF + 0(1/4». Continuing this construction induc-
tively, we produce a sequence {xn} C X, a decreasing sequence of positive
numbers S(1/2n) and a sequence {Un} of neighborhoods of t with the proper­
ties: Xn+1 E B(xn , 1/2n), Fu C B(xn , rF + S(l/2n», n E N, and lim S(1/2n) = O.
The sequence {xn} being "a Cauchy sequence, we denote its limit by Xo'
Obviously Xo E <P(t).

We complete the proof by showing that <P is lower semicontinuous. Let
to E {t; lfJ(t) n G =1= 0} for any open set G C X. Then there is a point x E X
and a number e > 0 such that x E lfJ(to) and B(x, e) C G. Take S(e) from
Lemma 1.1. There exists a neighborhood U1 of to with Fu C B(x, rF + S(e».

1

We show that U1 C {t; <P(t) n G =1= 0}. Let S E U1 , Y E lfJ(s). By Lemma 1.1
there exists a point Z",.II E B(x, e) C G with the property B(x, rF + See»~ n
B(y, rF + fJ) C B(z""y , rF + fJ) for every () with 0 < () < See). It is easy to
see that Z""y E lfJ(s). Indeed, given 8 with 0 < 8 < See), there is a neigh­
borhood U2 of s such that U2 CUI and Fu C B(y, r F + 8). Since Fu C Fu ,

• • 1

we have Eu• C B(x, rF + o(e» n B(y, rF + () C B(z""y, rF + fJ).

2. BEST SIMULTANEOUS APPROXIMATION BY M-IoEALS

In this section we establish two theorems on the existence of the best
simultaneous approximation in M-ideals. The concept of an M-ideal has
been introduced and studied in the important paper (1] of Alfsen and Effros.
A closed subspace V of a Banach space X is said to be an M-ideal, if there is a
projection P on the dual X* of X onto M\ the annihilator of M, with the
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property II u II = II Pu II + II u - Pu II for every u E X*. For further investi­
gations on M-ideals see also [2, 5, 6, 8]. A special case of an M-ideal is an
M-summand which is the range of an M-projection P, i.e., a projection with
the property II x II = Max(11 Px II, II x - Px II) for every x EX. A Banach
space X is said to admit Chebyshev centers if centx(F) =F for every
bounded set Fe X.

In the following lemma a property of M-ideals in Lindenstrauss spaces is
established.

LEMMA 2.1. Let X be a Lindenstrauss space, V C X an M-ideal,
K C X a compact set, r > O. Let B(x, r) n V =F 0 for every x E K. Let
nXEK B(x, r) =F 0. Then nXEK B(x, r) n V =F 0.

Proof For every n E 1\1 let Kn C Kbe a finite lin-net such that Kn C Kn+1 .
By Theorem 2.17 and Proposition 6.5 of [8] and Theorem 5.8 of [I] there is a
Yl E nXEK B(x, r) n V. Now, assume that for an n E 1\1 the points Yi E

nXEK B(;, r) n n~:~ B(y;, Ilj) n V, (we make use of the convention
n~~l B(y; , Ilj) = X here), i = I, ... , n, have already been constructed. Then
Yi E B(x, r + Iii) for i = 1,... , n and every x E K. This implies that the balls
B(Yi' Iii), i = 1,... , n, B(x, r), x E K, pairwise intersect. By a well-known
theoem of Lindenstrauss (cr., e.g., [7], Sect. 21, Theorem 6) we have
nXEK B(x, r) n n;~l B(y; , Ilj) =F 0. Again by Theorem 2.17 and Propo-

n+l
sition 6.5 of [8] and Theorem 5.8 of [1] there is a point Yn+1 E nXEK . B(x, r) n

n n~l

n;~l B(y; , Ilj) n V. Then Yn+1 E B(x, r + l/(n + 1) for every x E K. In this
way we construct a sequence {Yn} of points of V with the properties:
Yn E B(x, r + lin) for every x E K and every n E 1\1, Ym E B(Yn , lin) for every
m, n E 1\1 with m > n. It is easy to show that {Yn} is a Cauchy sequence.
Indeed, given E > 0 choose no EN such that Ilno < E/2. Then, for any
n, m E 1\1 with n, m > no we have II Yn - Ym II ,,;; II Yn - Yno II + II Y"o - Ym ,,;;
21no < E. Put Y = lim Y" . Then Y E V n nXEK B(x, r).

THEOREM 2.2. Let X be a Lindenstrauss space, V C X an M-ideal, Fe X
a compact set. Then there exists a Yo E centv(F).

Proof We obviously have centxCF) = nnEI\I nXEF B(x, radx(F) + lin).
Since the balls B(x, radx(F) + lin), x E F, n E 1\1, pairwise intersect, it follows
from the already mentioned theorem of Lindenstrauss [7, Sect. 21, Theorem 6]
that centx(F) =F 0. Putr = Max(radx(F), SUpxEF dist(x, V». Then obviously
radv(F) ;;, r. Since the set nXEF B(x, r) contains centx(F) it is nonempty.
Since V is proximinal [5], we have B(x, r) n V =F 0 for every x E F. The
assertion follows then from Lemma 2.1.

For M-summands we prove the following.

THEOREM 2.3. Let X be a Banach space admitting centers, V C X an
M-summand, Fe X a bounded set. Then centv(F) =F 0.
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Proof Let P be an M-projection onto V. We obviously have radv(F) =
Max(radv(PF), SUP",eF II x - Px II). If sUP",eF II x - Px II > radv(PF), every
Yo E V with SUP",eF II Px - Yo II < SUP",eF II x - Px II belongs to centv(F). If
SUP",eF II x - Px II ~ radv(PF), take any Yo E centx(F). It is easy to see that
pYo E centv(F).

3. BEST SIMULTANEOUS ApPROXIMATION' BY CLOSED SUBALGEBRAS

In [1 I] Smith and Ward proved that centv(F) =1= 0 for every closed
subalgebra V of C(T), the space of all continuous real-valued functions on a
compact Hausdorff space T and every bounded set F C C(T). It follows
from their result that the same is true for every closed subalgebra V of B(S)
and every bounded set F C B(S), where S is an arbitrary set and B(S) the
space of all real-valued bounded functions on S equipped with the norm of
uniform convergence when considering the space C(f3S), where f3S is the
Stone-Cech compactification of S equipped with the discrete topology. The
space C(f3S) is obviously linearly isometric and algebraically isomorphic to
B(S).

In this section we give another proof of this fact using a modification of a
technique due to Blatter and Seever [4].

Let S be a set, Va subalgebra of B(S). Define a set W by W = {x E B(S);
x(t) = yet) + IX for all t E S, some y E V and IX E R}. Clearly W is a closed
lattice cone, i.e., a convex cone in B(S), containing the constant functions
and closed both in the topology of B(S) and under lattice operations. W
defines a binary relation 8 on 2s, called quasi-proximity: A8B iff there does
not exist an x E W such that XA ~ x ~ XX\B, where XA and XX\B are the
characteristic functions of A and X\B, respectively. It follows from the
Interposition theorem 2.2 and the Characterization theorem 2.3 [4] that iffor
some x, y E B(S) and every r, s E IR with r < s we have {t; x(t) ~ s} non
o{t; yet) < r}, then there is a z E W with x ~ z ~ y.

THEOREM 3.1. Let S be an arbitrary set, Va subalgebra of B(S), FC B(S)
a bounded set. Then centv(F) ¥= 0.

Proof Let R = {t E S; x(t) = 0 for all x E V}. Clearly V = {x E W;
x(t) = 0 for all t E R}. We first prove that radv(F) ~ c, where c =

Max(al , G2 , Ga) with

G1 = sup (Ij2)(inf sup x(t) - sup inf xU»,
A8B teA ",eF teB ",eF

G2 = SUp infsup x(t),
A8R teA ",eF

Ga = SUp (-SUp inf X(t».
R8B teB xeF
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For fixed y E V denote d(y) = SUP",eF II x - y II. We have x(t) - yet) :::;; d(y)
for all x E F and all t E S which implies

Similarly we have

sup x(t) - yet) :::;; dey),
xeF

yet) - inf x(t) :::;; dey),
",eF

tES.

tES.

(3.2)

(3.3)

Let A~B. Then, by Proposition 4.1 of [4], (3.2) and (3.3), we have

inf sup x(t) - dey) :::;; inf yet) :::;; sup yet) ~ sup inf x(t) + dey).
teA zeF teA teB teB ",eF

It follows al :::;; dey).
Let AoR. Proposition 4.1 of [4] and (3.2) imply

inf sup x(t) - dey) :::;; inf yet) :::;; sup yet) = 0.
teA ",eF teA teR

Thus a2 :::;; dey).
Similarly one obtains a3 ~ dey). y E V being arbitrary, we have radv(F) =

int llev dey) ~ c.
Now, we show that there exists a Yo E V with d(yo) ::::;; radv(F). Put

sup x(t) - c,
XEF

u(t) =
0,

inf x(t) + c,
"'EF

vet) =
0,

t ES\R,

t E R,

t E S\R,

t E R.

In a way similar to that used in the proof of Theorem 6.2 of [4] it may be
shown that for all r, s E IR with r < s we have {t E S; u(t) ~ s} non 8{t E S;
vet) < r}. So there is, by Theorems 2.2 and 2.3 of [4], a Yo E W such that
u ~ Yo ~ v which is equivalent to Yo E V and d(yo) ::::;; c.
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